U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

EPIDEMIOLOGIC NOTES AND REPQRTS INFLUENZA - United States 1968

Since November 23, 1968, documented butbjeaks of A2/Hong Kong/68 influenza or A2 influenza have becer reported from Connecticut, Illinois, Maryland, Missouri, and New York City.

In Connecticut, an outbreak of A2/Hong KoAgholiA, GA International Notes influenza, documented by viral isolates, began at a university on November 17. Although secondary isolated cases of A2/Hong Kong/ 68 influenza were reported in a nearby college, there has been no increase in absenteeism rates in public schools or industries.

In Illinois, in a Veterans Administration hospital, influenza cases have occurred in several wards. A2 in-

CONTENTS
Epidemiologic Notes and Reports Influenza + United States 1968 Clostridium botulinum, Type A - Los Angeles, California . 441 California
 446

Scombroid Fish Poisoning - New York City 452
Trivalent Botulinus Antitoxin 444 Surveitlance Summary
Bern 1899-1967
Smaifpox Surveillance in Africa 447
fluenza viruses were isolated from 10 cases, and to date, three of these have been confirmed as A2/Hong Kong/68like viruses. Scattered isolated cases of A2/Hong Kong/68 influenza have also been confirmed in other areas of the state.
(Continued on page 442)
TABLEI. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
(Cumulative totals include revised and delayed reports through previous weeks)

DISEASE	48th WEEK ENDED		$\begin{gathered} \text { MEDIAN } \\ 1963-1967 \end{gathered}$	CUMULATIVE, FIRST 48 WEEKS		
	November 30. 1968	$\begin{gathered} \text { December } 2, \\ 1967 \end{gathered}$		1968	1967	$\begin{gathered} \text { MEDIAN } \\ 1963-1967 \end{gathered}$
Aseptic meningitis	64	56	47	4.124	2,841	2,003
Brucellosis	10	7	7	217	235	235
Diphtheria.	3	24	2	218	187	187
Encephalitis, primary: Arthropod-borne \& unspecified	22	17	---	1,324	1,487	---
Encephalitis, post-infectious	1	9	. -	439	711	-
Hepatitis, serum ...	97 834	85	751	4,286 4	2,127	34,952
Hepatitis, infectious	834	766	751	42.180	35,614	34,952
Malaria	54	46	1	2,200	1,936	97
Measles (rubeola)	212	248	2,272	21,441	60,732	253,379
Meningococcal infections, total	37	35	41	2,359	1.991	2,559
Civilian	37	35	-. -	2,166	1.868	-
Military .	-	-	--	193	123	---
Mumps	1,918	...	---	140.086	-	---
Poliomyelitis, total	-	2	4	55	43	96
Paralytic . .	-	-	3	55	32	89
Rubella (German measles)	286	262	---	46,987	42.657	---
Streptococcal sore throat \& scarlet fever. . .	9,216	8,873	8,194	392,711	409,582	360,761
Tetanus	1	6	6	152	209	254
Tularemia	1	1	3	166	157	230
Typhoid fever .	8	4	8	373	382	422
Typhus, tick-borne (Rky. Mt. spotted fever) .	3	1	1	276	297	245
Rabies in animals .	48	61	69	3.117	3.931	3.931

TABLE II. NOTIFIABLE DISEASES OF LOW FREQUENCY

INFLUENZA - (Continued from front page)

In Maryland, an outbreak of a febrile respiratory illness with an attack rate of 20 percent occurred in a school. Because of this outbreak, school was closed early for Thanksgiving vacation on November 22. Three of four throat cultures were positive for A2 influenza; further typing is underway.

In Missouri, an outbreak of an influenza-like illness began in a military installation on November 22. To date,
approximately 100 cases of influenza have occurred, and direct fluorescent antibody studies on sera from three patients have been positive for influenza A2. An A2/Hong Kong/68-like virus was isolated from a patient in another part of Missouri.

New York City reported scattered outbreaks of in-fluenza-like illness, and an A2 influenza virus was isolated. Further typing of this virus is in progress. Although

Figure 1
MORTALITY IN 122 UNITED STATES CITIES

industries in New York City are reporting febrile respiratory illness in employees, absenteeism rates have not increased.

During the past week, Montana, Texas, Ohio, and the District of Columbia have reported isolated outbreaks of influenza-like illness. These are currently being investigated.

Since September 2, a total of 25 states and the District of Columbia and Puerto Rico have reported some form
of influenza activity (Figure 3). Documented outbreaks of A2/Hong Kong/68 influenza or A2 influenza were reported in Alaska, Puerto Rico, California, Colorado, Utah, Pennsylvania, New Jersey, Connecticut, Maryland, North Carolina, Washington, Missouri, Illinois, and New York City. Outbreaks of an influenza-like illness were reported from Montana, Arizona, Texas, Ohio, and the District of Columbia. In addition, Texas, Ohio, and the District of Columbia
(Continued on page 444)

Figure 2
PNEUMONIA-INFLUENZA DEATHS IN 122 UNITED STATES CITIES

also reported laboratory documentation of isolated cases of A2/Hong Kong/ 68 influenza. Although no major outbreaks of influenza have occurred in Oregon, Hawaii, Minnesota, Iowa, Wisconsin, Michigan, Georgia, Alabama, and Virginia, these states have reported sporadic cases of A2/Hong Kong/ 68 influenza, documented by serologic evidence or viral isolations.

As illustrated in Figure 1, since the beginning of the current influenza season, there has been no sustained excess mortality reported from 122 U.S. cities. In addition, the geographic divisions with the exception of the Mountain Division have shown no significant increase in pneumonia-influenza deaths (Figure 2).

Editor's Note:

As contributors and readers of the Morbidity and Mortality Weekly Report know, individuals submitting data used in each article are identified. However, because of space limitations and the high priority of the influenza summary, in this issue, individuals responsible for this information have not been identified. The information was reported by the following state and local health departments: Alabama, Alaska, Arizona, California, Cleveland,

Figure 3
INCIDENCE OF INFLUENZA AND INFLUENZA-LIKE DISEASE BY STATE AS REPORTED TO NCDC SEPTEMBER 2, 1968 - DECEMBER 4, 1968

Colorado, Connecticut, District of Columbia, Georgia, Hawaii, Illinois, Iowa, Maryland, Michigan, Minnesota, Missouri, Montana, New Jersey, New York City, North Carolina, Ohio, Oregon, Pennsylvania, Puerto Rico, Texas, Utah, Virginia, Washington, and Wisconsin.

TRIVALENT BOTULINUS ANTITOXIN

Recently, a new trivalent antitoxin containing antitoxins A, B, and E (CONNAUGHT) was licensed for use in the United States. This and other combinations of type specific antisera are available from NCDC on request. Day and night telephone coverage has been established at the following numbers:

$$
\begin{array}{r}
\text { Area Code } 404-633-3311 \\
404-634-2561
\end{array}
$$

Patients with illness diagnosed clinically as botulism should immediately receive the trivalent antitoxin preparation (CONNAUGHT) until laboratory tests deter-
mine which toxin is responsible. Monovalent and bivalent preparations should be reserved for use after specific toxins have been demonstrated in the laboratory. Because types A and B as well as E toxins can contaminate marine products and because plant products can be contaminated with type E, the toxin type can not be determined by history alone; laboratory tests are essential.

In addition to providing type specific antisera on request, the NCDC also provides assistance in epidemic investigation and laboratory diagnostic services.

SURVEILLANCE SUMMARY BOTULISM - United States 1899-1967

During the years 1899-1967, 640 outbreaks of botulism with 1,669 cases and 948 deaths were recorded in the United States; 163 of these outbreaks occurred between 1950-1967. Of the 640 outbreaks, 21.6 percent were due to Clostridium botulinum, type A, 5.3 percent to type B, 2.7 percent to type E, and 0.3 percent to type F; in 70.1 percent, the type was not determined. In recent years, cases due to type E have increased in frequency, while cases due to types A and B have declined (Figure 4). From 1960-1967, type E accounted for most cases reported by specific type followed by types A, B, and F, respectively. The proportion of diagnosed cases in which the toxin type was undetermined has remained high; 76 percent of cases
during the period $1950-1959$ were due to unknown toxin types compared with 53 percent during 1960-1967.

During the period 1899-1949, the death-to-case ratio in botulism cases remained at levels above 60 percent. Since about 1950, the death-to-case ratio has declined (Figure 5). This decline is undoubtedly due to improvements in intensive care of acute respiratory failure and probably from the beneficial effects of C. botulinum antitoxins. The decline in death-to-case ratios has been greater for types A and B botulism than for type E. During the period 1960-1967, type E had the highest death-to-case ratio that was more than twice as high as for type A and four times as high as for type B. The specific age-to-case

Figure 5
CASES AND DEATHS DUE TO BOTULISM BY 10-YEAR PERIODS

1899-1967

fatality ratio was significantly higher for adults than for children from 1962-1967, during which time data were collected on 98 cases reported by age (Figure 6). This is probably a dose-related phenomenon rather than an inherent resistance of the young, since children are often more fastidious in their eating habits than adults.

Although outbreaks were reported from 44 states, five western states (California, Washington, Colorado, Oregon, and New Mexico) accounted for more than one-half of all reported outbreaks (Figure 7). There was also a correlation between the toxin type of botulism reported and the geographic area reporting it. Of the 139 type A outbreaks recorded from 1899-1967, 128 (91 percent) were in states west of the Mississippi River. California, Washington, New Mexico, and Oregon accounted for $43,12,8$, and 7 percent, respectively, of type A outbreaks. Twenty-six states, most of them in the East, have never reported type A outbreaks. Of the 34 type B outbreaks, 23 were reported from eastern states; New York ranked first in type B outbreaks by reporting 10 of these. Of the type E outbreaks,

Figure 6
AGE SPECIFIC BOTULISM CASE* FATALITY RATES 1962-1967
$(x)=$ TOTAL NUMBER IN AGE GROUP WITH BOTULISM

most occurred in Alaska or the Great Lakes area. However, California did report one type E outbreak and New York one type A outbreak. Alaska has never reported types A or B. These regional distributions are in keeping with the known distribution of spores revealed in surveys of soil samples conducted in $1922,{ }^{1} 1966,{ }^{2}$ and $1966 .{ }^{3}$

Since 1910, the source of most outbreaks of botulism was home-canned or preserved foods. A smaller number have been ascribed to commercially preserved foods. The sources of many outbreaks have remained unknown. Until a few years ago, outbreaks of botulism for which toxin types were determined were most frequently caused by type A or B toxin and were usually associated with ingestion of home-canned vegetables, fruits, or meat products. Botulism due to type E toxin was not recognized as a major problem until 1963 when 23 cases of this type were reported in 2 outbreaks traced to commercially preserved fish products. Of the 17 outbreaks of type $E, 16$ were traced to fish or fish products and one to a nonmarine
(Continued on page 446)

product, mushrooms. In addition to these 16 outbreaks of type E associated with fish, five outbreaks traced to fish or fish products were due to type A, and 2 to type B. One
outbreak of type F was reported; it was traced to homeprepared venison jerky (MMWR, Vol. 15, Nos. 41 and 42). (Reported by Enteric Diseases Unit, Bacterial Diseases Section, Epidemiology Program, and the Anaerobic Bacteriology Laboratory, Laboratory Program, NCDC.)

```
A copy of the original report from which these data were
derived is available on request from
    National Communicable Disease Center
    Atlanta, Georgia 30333
    Attn: Chief, Enteric Diseases Unit
    Bacterial Diseases Section
    Epidemiology Program
```

References:
${ }^{1}$ Meyer, K. F., and Dubovsky, B. J.: The distribution of the spores of B. botulinus in the United States. IV. J Infect Dis. 31:559-594, 1922.
${ }^{2}$ Bott, T. L., Deffner, J. S., McCoy, E., and Foster, E. M.: Clostridium botulinum type E in fish from the Great Lakes. J Bact. 91:919-924, 1966.
${ }^{3}$ Eklund, M. W., and Poysky, F.: Incidence of Clostridium botulinum type E from the Pacific Coast of the United States. Proceedings of the Fifth International Symposium on Food Microbiology: Moscow, July 1966. p. 49. Edited by Ingram, M., and Roberts, T. A., Chapman and Hall, Limited, London.

EPIDEMIOLOGIC NOTES AND REPORTS clostridium botulinum, type A Los Angeles, California

Several days after eating a sandwich of chopped chicken liver on October 17, 1968, a 23 -year-old man in Los Angeles, California, developed diplopia, dysphagia, difficulty in opening his eyes, and weakness of the limbs. On October 23, he was hospitalized. Respiratory arrest followed, and a tracheostomy was performed and he was placed on a respirator. A lumbar puncture revealed normal cerebrospinal fluid. When the history of ingesting a chicken liver sandwich that had a bad taste was elicited, a diagnosis of botulism was made. At the present time, although the patient has shown slight improvement, he still requires constant assistance for respiration.

Laboratory studies of the leftover chicken liver revealed Clostridium botulinum, type A toxin. No toxin was detected in the patient's serum obtained on October 23.

The commercial source for the chopped chicken liver was investigated. It was found that the chopped chicken livers are prepared from frozen stock. They are boiled for 20 minutes and then blended with onions, chicken skin, eggs, and seasoning. The resultant mixture is packed in a glass jar and immersed for 1 hour in a $180^{\circ} \mathrm{F}$. water bath for pasteurization. During this process the internal temperature of the jars does not exceed $155^{\circ} \mathrm{F}$. After cooling
at room temperature, the jars are refrigerated at $42^{\circ} \mathrm{F}$., awaiting distribution. The canned chicken liver has been recalled from distribution.
(Reported by James Chin, M.D., Head, General Epidemiology Section, Bureau of Communicable Diseases, California State Department of Public Health; Ichiro Kamei, M.D., Chief, Division of Acute Disease Control, and C.A. Lawrence, Ph.D., Director, Bureau of Laboratories, Los Angeles County Department of Public Health; and an EIS Officer.)

Editorial Note:

It is not unusual that type A toxin was not found in the patient's serum since 9 days had elapsed after ingestion of the contaminated vehicle and since, of all the botulinum toxins, type A appears to have the greatest tissue affinity. Prodromal gastrointestinal symptoms were notably absent in this case which is consistent with the behavior of type A toxin. Gastrointestinal disturbances are seen more commonly with types B and E. This is the second case of C. botulinum type A involving canned chicken liver reported to the NCDC during the past 5 years.

MEASLES - Philadelphia

Between September 1 and November 16, 1968, 44 cases of measles were reported from Philadelphia; 24 of which were associated with an elementary school out-
break. This outbreak was discovered following the investigation of a case reported on November 6 in a 6 -year-old Negro boy. School attendance records for grades $1-4$ in
this boy's school were reviewed and visits to homes of children who had 4 or more consecutive days of absenteeism were conducted. A total of 15 measles cases since the opening of school on September 6 were uncovered (Table 1). An additional nine measles cases were discovered in preschool siblings of school age cases.

Because a school child could not be identified as the index case, further epidemiologic investigation of pre-

Table 1
Measles Attack Rates by Grade in a Philadelphia
Elementary School, September 6 - November 16, 1968

Grade	Enrollment	Measles Cases	Attack Rate (Percent)
1	52	8	15
2	35	5	14
3	29	1	3
4	44	1	2
Total	160	15	11

school children was undertaken. After possible exposure to measles in a hospital outpatient clinic, a 1-year-old boy developed measles on September 9. His 4-year-old sister, following 4 days of cough, coryza, and fever, developed a rash on September 24 which lasted until September 30. On September 29, this girl attended a church service with another of her brothers and sat with members of his first grade class of the involved school. Although these class members were exposed late in this girl's illness, she may have been the source of measles introduciion for the school.

Cases of measles have been reported among students in at least four other schools in this area of Philadelphia. These cases are presently being investigated.
(Reported by Alfred S. Bogucki, M.D., M.P.H., Director, Division of Epidemiology, Lewis D. Polk, M.D., M.P.H., Deputy Health Commissioner for Community Health Services, and David Faris, M.D., M.P.H., Division of Epidemiology, City of Philadelphia, Department of Public Health; and an EIS Officer.)

INTERNATIONAL NOTES SMALLPOX SURVEILLANCE IN AFRICA ${ }^{1}$

Through October 31 in 1968, 54,135 cases of smallpox were reported from the world's endemic areas to the World Health Organization, approximately one-half the number of cases recorded during the same period in 1967. Of these, 17.1 percent were reported from Africa.

At present in Africa, smallpox is not a widespread disease; rather, it is concentrated in certain geographic foci. Five endemic areas are readily definable: in West and Central Africa - 1) Sierra Leone-Guinea and 2) Nige-ria-Niger-Dahomey-Togo; and in East and Southern Africa - 3) Ethiopia, 4) Democratic Republic of the Congo, and 5) Mozambique. Adjacent countries, often periodically free of smallpox, are repeatedly reinfected from these endemic areas.

In West and Central Africa, an active eradication program has been underway for the past 2 years. Since January 1,1967 , over $60,000,000$ vaccinations have been given in this area which has a population of $116,000,000$. In the endemic areas, prompt case investigation and epidemic control measures are being performed whenever a case is reported. Results of these efforts are shown in the significant reduction of smallpox cases over the past year (Figure 8). To date in $1968,4,556$ cases of smallpox have been reported compared with 9,724 cases in 1967 , a reduction of 53.1 percent. Every country except Togo has recorded fewer cases this year than last.

For 1968, however, in Eastern and Southern Africa, reported smallpox cases are already 50 percent greater than in 1967 . If present trends continue, about 7,000 cases will be reported for the year. This approximates the num-

Figure 8
SMALLPOX CASES BY MONTH

ber of cases observed during most years of the past decade but is considerably more than the 4,450 cases reported in 1967, a record low year. Information regarding the progress of smallpox eradication efforts in Eastern and Southern Africa is incomplete since most of these countries are just beginning or have only recently begun vaccination programs.
(Reported by the Smallpox Eradication Program, NCDC.)

[^0]TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
NOVEMBER 30, 1968 AND DECEMBER 2, 1968 (48th WEEK)

AREA	ASEPTIC MENINGITIS		brucellosis	BIPHTHERIA	ENCEPHALITIS			HEPATITIS			MALARIA	
			Primary including unsp. cases		PostInfectious	Serum	Infectious					
	1968	1967		1968	1968	1968	1967	1968	1968	1968	1967	1968
UNITED STATES...	64	56	10	3	22	17	1	97	834	766	54	
new england...........	1	-	2	-	5	-	1	15	57	38	1	
Maine.*.............	-	-	1	-	-	-	-	-	1	2	-	
New Hampshire.*....	-	-	-	-	-	-	-	-	1	-	-	
Vermont.............	-	-	-	-	-	-	-	-	-	-	-	
Massachusetts......	1	-	1	-	2	-	-	4	34	12	1	
Rhode Island.	-	-	-	-	1	-	-	-	8	2	-	
Connecticut........	-	-	-	-	2	-	1	11	13	22	-	
MIDDLE ATLANTIC.	13	12	1	-	-	1	-	42	153	102	4	
New York City......	4	3	-	-	-	1	-	26	64	37		
New York, up-State.		2	1	-	-	-	-	7	23	14	1	
New Jersey.........	5	5	-	-	-	-	-	5	25	22	-	
Pennsylvanía.......	4	2	-	-	-	-	-	4	41	29	3	
EAST NORTH CENTRAL. .	7	5	-	-	7	2	-	2	142	128	2	
Ohic................	-	2	-	-	4	1	-	-	61	25	-	
Indiana.............	-	-	-	-	-	-	-	-	8	12	-	
Il1inois............	2	1	-	-	-	-	-	1	18	37	2	
Michigan............	5	1	-	-	2	1	-	1	46	39	-	
Wisconsin..........	-	1	-	-	1	-	-	-	9	15	-	
WEST NORTH CENTRAL...	1	-	1	-	1	1	-	-	25	53	2	
Minnesota..........	1	-	-	-	-	-	-	-	15	17	-	
Iowa.	-	-	-	-	1	1	-	-	4	16	-	
Missouri...........	-	-	-	-	-	-	-	-	1	12	2	
North Dakota.	-	-	1	-	-	-	-	-	-	2	-	
South Dakota.......	-	-	-	-	-	-	-	-	-	-	-	
Nebraska...........	-	-	-	-	-	-	-	-	3	-	-	
Kansas..............	-	-	-	-	-	-	-	-	2	6	-	
SOUTH ATLANTIC.......	8	12	-	-	-	5	-	2	88	94	24	
Delaware...........	-	-	-	-	-	-	-	-	1	5	-	
Maryland............	1	2	-	-	-	-	-	-	15	13	-	
Dist. of Columbia.*	-	-	-	-	-	-	-	1	-	4	-	
Virginia............	1	1	-	-	-	-	-	1	14	10	-	
West Virginia......	-	2	-	-	-	-	-	-	7	13	-	
North Carolina.....	-	1	-	-	-	2	-	-	7	3	11	
South Carolina.....	-	-	-	-	-	-	-	-	7	1	1	
Georgia.............	-	-	-	-	-	-	-	-	17	34	10	
Florida.............	6	6	-	-	-	3	-	-	20	11	3	
EAST SOUTH CENTRAL...		-	2	2	-	-	-	1	51	57	2	
Kentucky............	4	-	-	-	-	-	-	-	29	19	2	
Tennessee...........	4	-	2	-	-	-	-	1	12	20	-	
Alabama............	-	-	- -	2	-	-	-	-	6	2	-	
Mississippi........	-	-	-	-	-	-	-	-	4	16	-	
WEST SOUTH CENTRAL...	4	3	-	1	2	3	-	1	32	76	4	
Arkansas............	-	1	-	-	-	-	-	-	-	9	-	
Loulsiana.*.........	-	-	-	1	-	1	-	1	7	18	3	
Oklahoma............	-	-	-	-	1	2	-	-	1	6	1	
Texas..............	4	2	-	-	1	-	-	-	24	43		
mountain...............	1	1	-	-	1	-	-	1	53	24	2	
Montana.............	-	-	-	-	-	-	-	-	1	7	-	
Idaho...............	-	-	-	-	-	-	-	-	1	-	-	
Wyoming.	-	-	-	-	-	-	-	-	1	2	-	
Colorado...........	-	1	-	-	-	-	-	1	25	-	2	
New Mexico.........	1	-	-	-	-	-	-	-	14	2	-	
Arizona.............	-	-	-	-	-	-	-	-	3	-	-	
Utah................	-	-	-	-	1	-	-	-	8	11	-	
Nevada.	-	-	-	-	$-$	-	-	-	-	2	-	
PACIFIC...............	21	23	4	-	6	5	-	33	233	194	13	
Washington.........	1	-	-	-	1	-	-	-	17	20	-	
Oregon..............	-	-	4	-	5	-	-	-	20	12	1	
California.........	20	21	4	-	5	5	-	33	192	161	4	
Alaska.............	-	-	-	-	-	-	-	-	-	-	-	
Hawaii..............	-	2	-	-	-	-	-	-	4	1	8	
Puerto Rico...........	-	-	-	-	-	-	-	-	46	22	-	

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
NOVEMBER 30, 1968 AND DECEMBER 2, 1967 (48th WEEK) - CONTINUED

AREA	MEASLES (Rubeola)			MENINGOCOCCAL INFECTIONS, TOTAL			MUMPS	POLIOMYELITIS			RUBELLA
		Cumulative			Cumulative		1968	Total	Paralytic		
	1968	1968	1967	1968	1968	1967		1968	1968	1968	1968
UNITED STATES...	212	21,441	60,732	37	2,359	1,991	1,918	-	-	55	286
NEW ENGLAND.	26	1,24538	923	2	137	80	339	-	-	1	212
Maine..............	-		262	-	6	3	38		-		
New Hampshire.....	-	141	77	-	8	3	1	-	-	-	-
Vermont............	1	3	34	-	1	1	34	-	-	-	-
Massachusetts.*....	3	379	391	1	72	36	137	-	-	1	8
Rhode Island.	16	39	62	-	9	6	64	-	-	-	2
Connecticut......	6	645	97	1	41	31	65	-	-	-	9
middle atlantic.....	60	4,533	2,483	3	423	329	59	-	-	1	18
New York City......	27	2,342	508	-	86	60	32	-	-	-	8
New York, Up-State.	13	1,337	630	-	72	81	NN	-	-	1	4
New Jersey.........	16	689	575	-	146	106	27	-	-	-	6
Pennsylvania........	4	165	770	3	119	82	NN	-	-	-	-
EAST NORTH CENTRAL...	35	4,082	6,028	7	294	277	470	-	-	9	73
Ohio...............	5	320	1,177	1	82	92	51	-	-	2	8
Indiana............	5	709	647	1	40	31	44	-	-	2	17
Illinois...........	6	1,410	1,162	1	64	61	16	-	-	2	6
Michigan............	4	317	1,006	4	88	72	77	-	-	3	29
Wisconsin..........	15	1,326	2,036	-	20	21	282	-	-	-	13
WEST NORTH CENTRAL...	2	409	2,944	-	126	93	381	-	-	3	18
Minnesota..........	-	18	135	-	29	21	7	-	-	-	3
Iowa...............	-	108	775	-	10	19	172	-	-	1	13
Missouri...........	-	81	340	-	41	18	130	-	-	2	-
North Dakota.	-	138	886	-	4	3	58	-	-	-	-
South Dakota.......	-	4	58	-	5	7	NN	-	-	-	-
Nebraska............	2	50	656	-	9	15	7	-	-	-	2
Kansas..............	-	10	94	-	28	10	7	-	-	-	-
SOUTH ATLANTIC.......	37	1,645	7,214	11	474	388	114	-	-	3	25
Delaware...........	1	18	50	3	12	8	2	-	-	-	3
Maryland...........	-	103	174	-	40	55	16	-	-	-	5
Dist. of Columbia..	-	6	24	-	17	15	1	-	-	1	-
Virginia...........	-	319	2,254	-	44	43	7	-	-	-	
West Virginia......	-	312	1,457	-	13	37	54	-	-	1	9
North Carolina.....	25	317	926	3	94	80	NN	-	-	1	-
South Carolina.....	3	22	512	-	61	32	13	-	-	-	1
Georgia............	-	4	42	3	93	57	-	-	-	-	-
Florida............	8	544	1,775	2	100	61	21	-	-	-	4
EAST SOUTH CENTRAL...	-	503	5,460	1	209	156	48	-	-	1	7
Kentucky...........	-	103	1,428	-	94	45	27	-	-	1	-
Tennessee.	-	64	2,002	1	64	68	21	-	-	-	5
Alabama.............	-	95	1,354	-	27	29	-	-	-	-	-
Mississippi.......	-	241	676	-	24	14	-	-	-	-	2
WEST SOUTH CENTRAL...	25	5,155	18,005	5	336	252	52	-	-	24	14
Arkansas.	-	2	1,404	-	20	40	-	-	-	1	-
Louisiana...........	-	25	156	-	94	98	-	-	-	-	-
Oklahoma...........	-	- 128	3,359	2	55	18	2	-	-	2	2
Texas..	25	5,000	13,086	3	167	96	50	-	-	21	12
MOUNTAIN.............	2	1,058	4,848	2	43	40	70	-	-	1	29
Montana.	-	58	328	-	6	5	18	-	-	-	6
Idaho.............. .	-	21	395	-	11	3	1	-	-	-	-
Wyoming.	-	54	202	-	3	1	-	-	-	-	-
Colorado...........	1	521	1,617	1	13	13	29	-	-	-	11
New Mexico.........	-	143	606	-	1	5	3	-	-	-	-
Arizona............	-	233	1,048	1	5	6	17	-	-	1	3
Utah...............	-	21	383	-	1	4	2	-	-	-	9
Nevada.	1	7	269	-	3	3	-	-	-	-	-
PACIFIC..............	25	2,811	12,827	6	317	376	385	-	-	12	81
Washington.	5	588	5,623	3	50	37	168	-	-	1	41
Oregon.............	5	577	1,698	-	25	30	3	-	-	-	7
California.*.......	15	1,600	5,183	3	225	294	197	-	-	11	31
Alaska..............	-	11	141	-	3	11	11	-	-	-	-
Hawaii.	-	35	182	-	14	4	6	-	-	-	2
Puerto Rico..........	3	488	2,236	-	20	15	30	-	-	-	-

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISE i S: UNITED STATES FOR WEEKS ENDED

NOVEMBER 30, 1968 AND DECEMBER 2, 1967 (48th WEEK) - CONTINUED

AREA	STREPTOCOCCAL SORE THROAT \& SCARLET FEVER	TETANUS		TULAREMIA		TYPHOID		TYPHUS FEVER TICK-BORNE (Rky. Mt. Spotted)		RABIES IN ANIMALS	
	1968	1968	$\begin{aligned} & \hline \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$	1968	$\begin{aligned} & \hline \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$	1968	$\begin{aligned} & \hline \text { Cum. } \\ & 1968 \end{aligned}$	1968	$\begin{aligned} & \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$	1968	$\begin{aligned} & \hline \text { Cum. } \\ & 1968 \\ & \hline \end{aligned}$
UNITED STATES...	9,216	1	152	1	166	8	373	3	276	48	3,117
NEW ENGLAND.	1,398	-	4	-	47	-	13	-	1	-	74
Maine.*.	16	-	-	-	-	-	2	-	-	-	55
New Hampshire.....	26	-	1	-	-	-	1	-	-	-	2
Vermont............	20	-	-	-	47	-	-	-	-	-	11
Massachusetts.....	239	-	1	-	-	-	7	-	1	-	5
Rhode Island.......	148	-	-	-	-	-	-	-	-	-	-
Connecticut........	949	-	2	-	-	-	3	-	-	-	1
middle atlantic. . . .	228	-	19	-	10	1	35	-	22	1	51
New York City......	6	-	11	-	-	1	18	-	-	-	-
New York, Up-State.	192	-	4	-	7	-	8	-	5	-	41
New Jersey..........	NN	-	1	-	-	-	4	-	7	-	-
Pennsylvania.......	30	-	3	-	3	-	5	-	10	1	10
EAST NORTH CENTRAL...	574	-	16	-	11	-	47	-	9	1	279
Ohio...............	134	-	2	-	1	-	19	-	7	-	92
Indiana.............	90	-	2	-	1	-	7	-	-	-	90
Illinois...........	63	-	8	-	8	-	19	-	2	-	38
Michigan...........	150	-	3	-	1	-	-	-	-	1	17
Wisconsin..........	137	-	1	-	-	-	2	-	-	-	42
WEST NORTH CENTRAL. .	335	-	15	-	16	1	39	-	9	12	772
Minnesota..........	44	-	2	-	-	-	2	-	-	4	246
Iowa................	94	-	4	-	-	-	2	-	1	-	119
Missouri...........	1	-	5	-	7	-	26	-	3	1	111
North Dakota......	61	-	-	-	-	-	-	-	-	6	126
South Dakota.......	24	-	1	-	3	-	2	-	4	-	97
Nebraska...........	58	-	3	-	1	1	4	-	1	-	27
Kansas.............	53	-	-	-	5	-	3	-	-	1	46
SOUTH AtLantic.......	877	-	32	-	12	1	62	1	142	9	382
Delaware..........	5	-	-	-	-	-	-	-	-	-	1
Maryland...........	148	-	3	-	-	-	9	-	18	-	6
Dist. of Columbia..	-	-	2	-	-	-	1	-	-	-	2
Virginia...........	231	-	4	-	3	-	10	-	44	2	131
West Virginia......	183	-	2	-	-	-	-	-	2	-	49
North Carolina.....	14	-	2	-	3	-	4	-	39	-	12
South Carolina.....	72	-	4	-	-	-	3	-	9	-	-
Georgia.............	5	-	3	-	4	-	15	1	27	4	77
Florida.............	219	-	12	-	2	1	20	-	3	3	104
East south central. .	959	-	15	-	9	2	46	2	57	9	665
Kentucky............	122	-	1	-	2	-	10	-	10	6	351
Tennessee..........	674	-	6	-	5	2	21	1	39	3	282
Alabama............	66	-	5	-	-	-	2	1	5	-	25
Mississippi........	97	-	3	-	2	-	13	-	3	-	7
WEST SOUTH CENTRAL...	518	1	30	1	48	-	51	-	30	12	482
Arkansas............	16	-	5	-	15	-	18	-	6	1	62
Louisiana..........	14	-	10	-	7	-	6	-	1	1	46
Oklahoma...........	50	-	-	-	9	-	15	-	14	1	120
Texas..............	438	1	15	1	17	-	12	-	9	9	254
mountain.	2,264	-	1	-	9	2	21	-	5	2	89
Montana.	50	-	-	-	-	-	-	-	-	-	-
Idaho...............	92	-	-	-	-	-	-	-	1	-	-
Wyoming.	192	-	-	-	1	-	1	-	-	-	3
Colorado...........	1,625	-	-	-	3	2	5	-	4	-	4
New Mexico.	119	-	-	-	-	-	8	-	-	1	39
Arizona*............	78	-	1	-	-	-	6	-	-	1	39
Utah................	105	-	-	-	5	-	-	-	-	-	1
Nevada.............	3	-	-	-	-	-	1	-	-	-	3
PACIFIC..............	2,063	-	20	-	4	1	59	-	1	2	323
Washington.	1,240	-	1	-	-	-	2	-	-	-	2
Oregon.............	75	-	1	-	1	-	5	-	1	2	6 315
California.........	592	-	18	-	3	1	52	-	1	2	315
Alaska.............	5	-	-	-	-	-	-	-	-	-	-
Hawaii.............	151	-	-	-	-	-	-	-	-	-	-
Puerto Rico...........	6	-	12	-	-	1	5	-	-	-	20

*Delayed reports: SST: Me. 15, Wyo. 8
Rabies in animals: Ariz. 1

Week No. TABLE IV. DEATHS IN 122 UNITED STATES CITIES FOR WEEK ENDED NOVEMBER 30, 1968
48 (By place of occurrence and week of filing certificate. Excludes fetal deaths)

EPIDEMIOLOGIC NOTES AND REPORTS SCOMBROID FISH POISONING - New York City

Recently, two outbreaks of scombroid fish poisoning occurred in New York City. The first outbreak occurred on July 10,1968 , among members of two families. Of a total of nine persons, eight became ill with symptoms characterized by generalized flushing, urticaria, conjunctivitis, nausea, headache, abdominal cramps, and diarrhea. The incubation period was less than 30 minutes and duration of illness from 1 to 4 hours. The patients improved with antihistamine treatment.

Food histories implicated fresh tuna fish as the vehicle of infection. The tuna fish was purchased from a fish market, and then washed, salted, and refrigerated. Later the same day, it was fried and eaten. Routine laboratory cultures of left-over fish including tests for Proteus species were negative. However, the fish was noted to be honeycombed - a sign of advanced decomposition - and had a histamine level of 425.5 mg per $100 \mathrm{gm} . *$

The second outbreak occurred on October 4, 1968, among members of two families. Of six persons eating the meal, five subsequently became ill with symptoms characterized by rash, palpitations, nausea, abdominal cramps, and diarrhea. The incubation period was $20-30$ minutes and duration of illness from 2 to 6 hours. The patients were treated with antihistamines.

Food histories again implicated fresh tuna fish as the vehicle. The tuna fish was caught off-shore by a private fisherman 4 days prior to the dinner. The fish was refrigerated intact for the first 24 hours. In attempting to clean the fish the following day, difficulty was encountered in removing the head. To facilitate dressing, the fish was placed in a bath tub of hot water for 24 hours. The fish was then cut, cooked, and eaten. No fish remained for laboratory examination.
(Reported by Carol Schachner, M.D., Epidemiologist, and Tibor Fodor, M.D., Chief, Division of Epidemiology and Diagnosis, New York City Department of Health.)
Editorial Note:
Scombroid fish poisoning occurs in scombroid fish such as tuna, mackerel, bonito, albicore, and skipjack. This form of ichthyosarcotoxism, which is associated with inadequate refrigeration or decomposition of fish, is thought to be due to the release of histamine or a histamine-like substance called saurine. These chemical products are released when contaminating or naturally present bacteria such as Proteus species act on the histadine substrate in the fish skin. ${ }^{1,2}$

References:

${ }^{1}$ Kawabata, T., Ishizaka, K., and Miura, T.: Studies on allergylike food poisoning associated with putrefaction of marine products. Jap J M Sc and Biol 8(6):487-528, 1955.
${ }^{2}$ Halstead, B. W.: Poisonous fish-like vertebrates. In Conference on Shellfish Toxicology, 1957. U.S. Department of Health, Education, and Welfare, Public Health Service, Washington, D. C., 1957, pp. 37-76.

[^1]THE MORBIDITY AND MORTALITY WEEKLY REPORT, WITH A CIRCULATION OF 17,000 IS PUBLISHED AT THE NATIONAL COMMUNICABLE DISEASE CENTER, ATLANTA, GEORGIA

DIRECTOR, NATIONAL COMMUNICABLE DISEASE CENTER
CHIEF, EPIDEMIOLOGY PROGRAM CHIEF, STATISTICS SECTIONRAM IDAL. SHERMAN, M.S. EDITOR MICHAEL B. GREGG, M.D.

IN ADDITION TO THE ESTABLISHED PROCEDURES FOR REPORTING MORBIDITY AND MORTALITY, THE NATIONAL COMMUNICABLE DISEASE CENTER WELCOMES ACCOUNTS OF INTERESTING OUTBREAKS OR CASE INVESTIGATIONS WHICH ARE OF CURRENT INTEREST TO HEALTH OFFICIALS AND WHICH ARE DIRECTLY RELATED TO THE CONTROL OF COMMUNICABLE DISEASES. SUCH COMMUNICATIONS SHOULD BE ADDRESSED TO:

NATIONAL COMMUNICABLE DISEASE CENTER
ATLANTA, GEORGIA 30333
ATTN: THEEDITOR
MORBIDITY AND MORTALITY WEEKLY REPORT

NOTE: THE DATE IN THIS REPORT ARE PROVISIONAL AND ARE BASED ON WEEKLY TELEGRAMS TO THE NCDC BY THE INDIVIDUAL STATE HEALTH DEPARTMENTS. THE REPORTING WEEK CONGLUDES AT CLOSE OF BUSINESS ON FRIDAY; COMPILED DATA ON A NATIONAL basis are released on the succeeding friday.

[^0]: Reference:
 ${ }^{1}$ World Health Organization Weekly Epidemiological Record. 43(45):575-579.

[^1]: *A level of 50 micrograms per 100 ml is evidence of advanced decomposition for tuna fish. In freshly caught tuna fish, the amount of histamine is virutally zero.

